Extremal Results in Random Graphs
نویسنده
چکیده
According to Paul Erdős [Some notes on Turán’s mathematical work, J. Approx. Theory 29 (1980), page 4] it was Paul Turán who “created the area of extremal problems in graph theory”. However, without a doubt, Paul Erdős popularized extremal combinatorics, by his many contributions to the field, his numerous questions and conjectures, and his influence on discrete mathematicians in Hungary and all over the world. In fact, most of the early contributions in this field can be traced back to Paul Erdős, Paul Turán, as well as their collaborators and students. Paul Erdős also established the probabilistic method in discrete mathematics, and in collaboration with Alfréd Rényi, he started the systematic study of random graphs. We shall survey recent developments at the interface of extremal combinatorics and random graph theory.
منابع مشابه
The Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملEccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملExtremal Results for Random Discrete Structures
We study thresholds for extremal properties of random discrete structures. We determine the threshold for Szemerédi’s theorem on arithmetic progressions in random subsets of the integers and its multidimensional extensions and we determine the threshold for Turán-type problems for random graphs and hypergraphs. In particular, we verify a conjecture of Kohayakawa, Luczak, and Rödl for Turán-type...
متن کاملUniversal Poisson and Normal Limit Theorems in Graph Coloring Problems with Connections to Extremal Combinatorics
This paper proves limit theorems for the number of monochromatic edges in uniform random colorings of general random graphs. The limit theorems are universal depending solely on the limiting behavior of the ratio of the number of edges in the graph and the number of colors, and works for any graph sequence deterministic or random. The proofs are based on moment calculations which relates to res...
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کامل